

	The 5 strands of math	C	onceptual inderstanding
	proficiency	Strategic Competence Adaptive	e Productive Disposition
		Reasoning	Fluency
1)	<u>Conceptual understanding-</u> comprehension of mathema concepts, operations, and relations (involves modelling mayocabulary, concept mapping).	13	W
2)	<u>Procedural fluency</u> - computing (carrying out procedures and efficiently).	accurately	NRC (2001)Kilpatrick et al.
3)	Strategic competence-represent and solve math problem	ns.	
4)	<u>Adaptive reasoning</u> - capacity of logical thought, explanar reflection.	tion and	1/6
5)	Productive disposition- to see maths as worthwhile and	useful,	(3)

5

The use of language in mathematics differs from the language of ordinary speech in three important ways:

- Unaffected by time (a slight difficulty lies in forming strong examples of logical principles using ordinary subjects) (Math discourse- it just "is").
 Lacks emotional content.
- 3) Distinguishes mathematical from ordinary language (causes enormous difficulty).

Therefore, students need to learn the different tools of language in mathematics in order to be successful.

The National Numeracy Review Report, 2008 (COAG)- Research evidence about the role of language in numeracy learning.

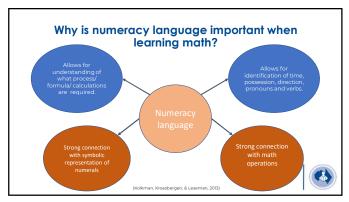
Several issues relating to language and literacy were identified:

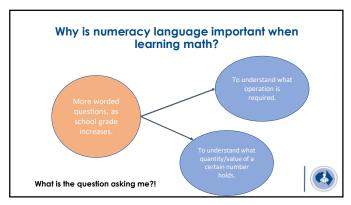
- 1) The specialised symbols and expressions of mathematical language.
 2) The use of everyday English terms that have different meanings in mathematics
- Language-based factors in solving mathematical word problems.
- Communication in the mathematics classroom. (COAG, 2008)

National Numeracy Review Report

7

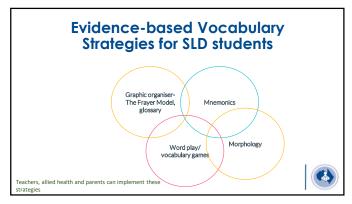
A summary of key linguistic features of the mathematics register is indicative of the different aspects of language **involved.** Features in a mathematics classroom:


- Multiple semiotic register
 mathematics symbolic notation
- oral language
- written language
- graphs and visual displays

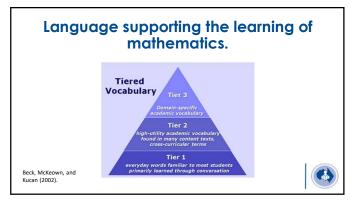

Grammatical patterns

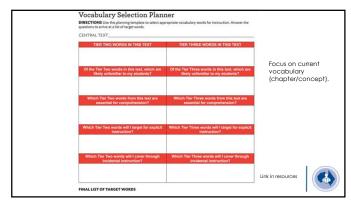
- technical vocabulary
- dense noun phrases
- being and having verbs
 conjunctions with technical meaning
- implicit logical relationships. (Schleppegrell, 2007)

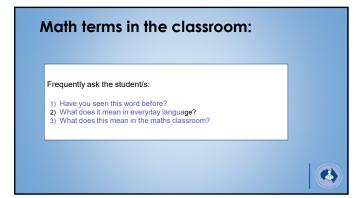
8

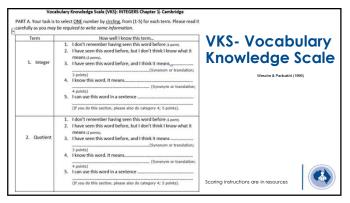

The first step in learning the formal communication of mathematics is in learning definitions (Jamison, 2000).

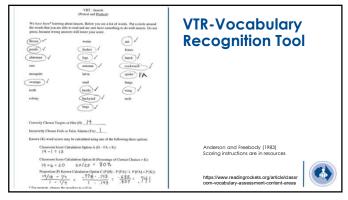
Di Gisi and Fleming (2005) describe three types of vocabulary that students need to be able to solve word problems:

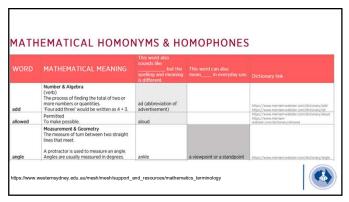

- mathematics vocabularyprocedural vocabularydescriptive vocabulary




13




14

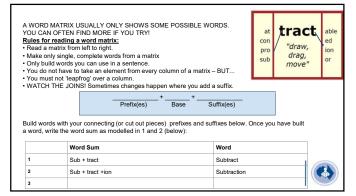


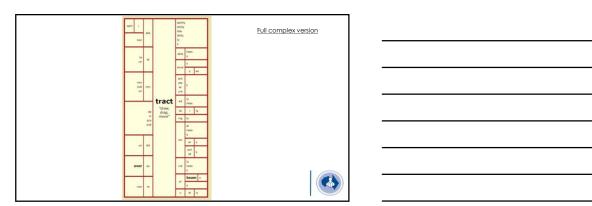
	Word	Everyday (dictionary)	Mathematical definition (from Mathematics Glossary (*)	
Glossary	mean	nasty	Also called the average . The sum of values in a data set divided by the total number of values in the data set. For example, if a data set consists of the values then the mean is defined as:	
,			For example, for the following list of five numbers {2, 3, 3, 6, 8 } the mean equals	
	average	ordinary or even less than ordinary	Average: Also called the mean. (see above)	

"In terms of meaning-making systems, students must move between written language, oral language, symbolic notation, and graphs and visual displays. They must also become familiar with mathematical grammatical patterns relating to technical vocabulary, use of synonymous verbs, and implicit logical relationships."

(Schleppegrell, 2007)

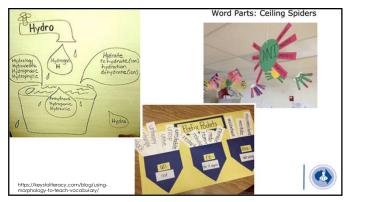
22

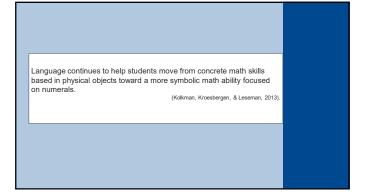


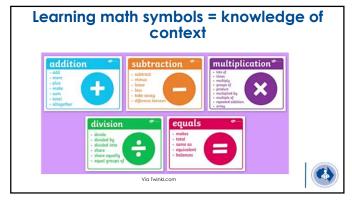

23

Language in graphs and statistical displays.

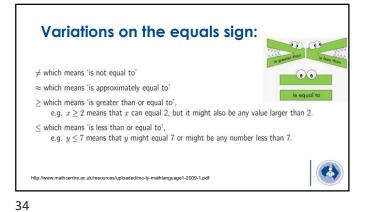
Graphs:	Box and whisker:	General:
Axes	Median	Mean
Axial intercept	Outlier	Mode
Axes intercepts	Range	Quantitative data
Turning point	Interquartile range	Qualitative data
Origin	Quartile range	Frequency distribution
Gradient		Population
Plot		Central tendency

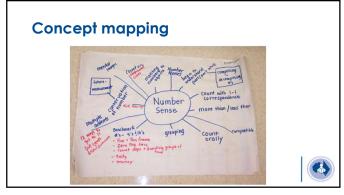


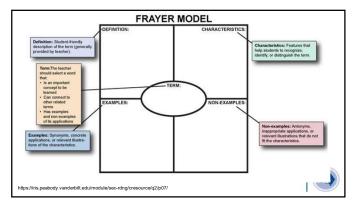


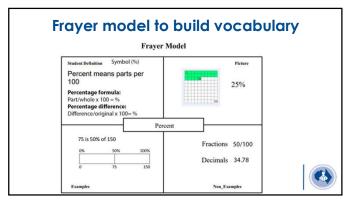


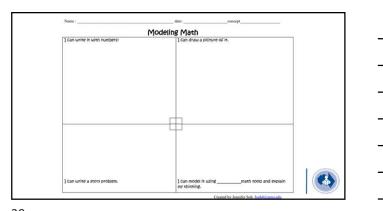
morpheme	meaning	sample word	morpheme	meaning	sample word	
alt circum col/com/con de dia digit equi fer fract	high around with/together down/away across finger equal bring/carry break	altitude circumference collinear denominator diagonal digital equilateral circumference fraction	nom numer oid para pend peri ply/plic put(e) radi	name number resembling beside hang around fold think ray	denominator numerator trapezoid parabola perpendicular perimeter multiply compute radius	
gon grade gram/graph hedron hypo inter	angle step write sided object under between/ among	polygon centigrade kilogram tetrahedron hypotenuse intersect	rect sect sphere sub sym/syn/syl tang therm	right/straight cut/divide ball below/under with/together touch heat	rectangle bisect spherical subtract symmetric tangent thermometer	(Morpholog Matters, William Van Cleave, 2019)
iso lat lin medi meter/metry mut	equal side line middle measure change	isosceles collateral collinear median symmetrical commutative	tract verse/vert	drag/pull turn	protractor vertex	

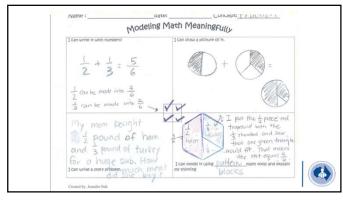


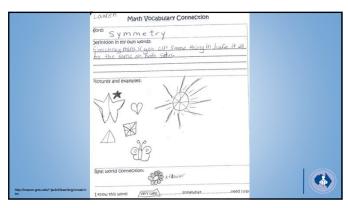


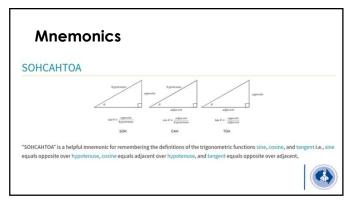


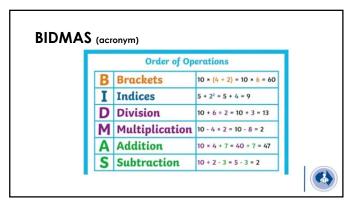

Symbols with no context... + 24 32 + 567 +406 567 502 -98 73 - 23 -7°C ★ 5 x 4 5 + 5 + 5 + 5 3 x 150ml beakers ♣ 10/5 8 ÷ 4 8/4 What does this all mean?

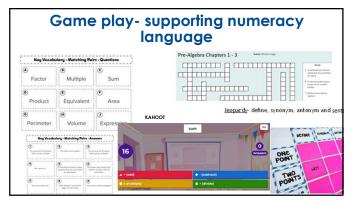


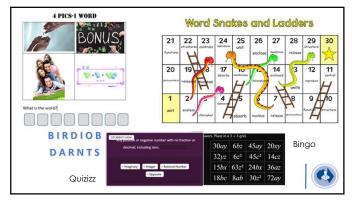

Mc	athe	mati	cal	sym	bols	s- stu	Jden	ıt sh	eet	
x ²	x ³	\sqrt{x}	√-	^	\$√x	s	2	<	>	
squared	cubed	square root	radical	exponent (raise to a power)	cube root	less than or equal to	more than or equal to	less than	more than	
*	×	()	()	п	x		120	11:	111	
equal to	not equal to	brackets	brackets	brackets	mean	approximately equal to	therefore	parallel	similar	
a	,	+	- 6	×	- 14	-	*F	°C	θ	
congruent	divide by	fraction bar	multiply by		decimal point	infinity	degrees Fahrenheit	degrees Celsius	theta	
(*)	AB	_	Σ	ſ	π	**	-	*		
degrees	ray AB	angle	sum of	integral	pi 3.14159	addition or positive	subtraction or negative	plus or minus	perpendicular to	Via Twinkl.com









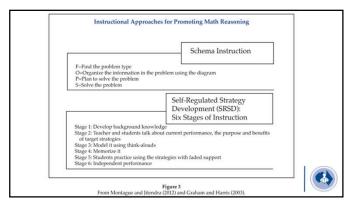


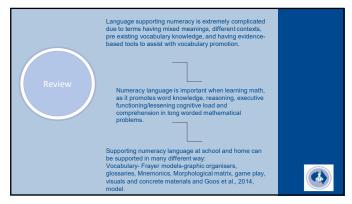
Environment- supporting numeracy language for SLD students

- Glossary poster with definitions and accompanied pictures/diagrams.
- Quick reference cards.
 Repetition of important terms or concepts over an extended period of time.
- Incorporate Interleaved practice.
- Explicit instructions.
- Ongoing planned revision, and purposeful use of key mathematical vocabulary(e.g. talking, listening, writing), is key for ensuring all students retain use of language.
- Giving mathematical concepts relevance to everyday life.
- Promoting numeracy language throughout all subjects in secondary school (i.e., Goos, Geiger, and Dole (2014) model).
- Highlight/underline key vocabulary terms in a question and unpack the meaning.

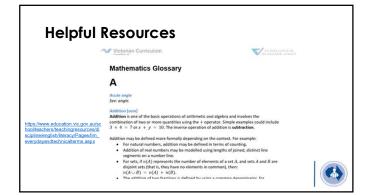
 Hosting Numeracy nights with parents/students- playing games

47


Lastly, supporting math reasoning...


In the classroom to assist with math reasoning skills of students who struggle with Math (who have specific learning difficulties) use:

- 1) Explicit instruction.
- Student verbalization of their reasoning.
- 3) Visual representations to solve word problems.4) Heuristics.
- 5) Range and sequence of examples.6) Peer-assisted learning.



Kiuhara et al. 2014

Helpful Resources- glossaries: Statistical terms and concepts (ABS): https://www.abs.gov.au/statistics/understanding-statistics/statistical-terms-and-concepts Homonyms and homophones mathematical glossary: https://www.westernsydney.edu.au/_data/assets/pdf_file/0009/1628244/Mathematical_homonyms_and_homophones.pdf Etymology assist with base word origins): https://www.etymonline.com/ Mathwords (An interactive math dictionary with enoughmath words, math terms,math formulas, pictures, diagrams, tables, and examples) http://www.mathwords.com/ MathCentre (gives information on the appropriate use of symbols)

http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-mathlanguage1-2009-1.pdf

53

Helpful Resources- game links

 $\textbf{Crossword maker}. maths (make or print FREE math crosswords-hundreds to choose from) \\ \underline{https://mycrosswordmaker.com/Browse/Math}$

Word Search- maths (make or print FREE math word searches)

Mathstaters BINGO

https://mathsstarters.net/bingo

Kahoot https://kahoot.com/schools-u/

Quizizz

https://quizizz.com/admin

55

Helpful resources- VKS Scoring

1= 1 point, 2= 2 points, 3 (Synonym or translation) = 3 points, 4 (Synonym or translation) = 4 points & 5 = 5 points per word.

Incorrect response:

- Incorrect response in category 3 = 2 **points** for the total item <u>even</u> if the student attempted category 4 and category 5 $\underline{\text{unsuccessfully}}.$
- If the sentence in category 5 demonstrates the $\underline{\text{correct meaning}}$ but the word is not used appropriately in the sentence context= **3 points**.
- 4 points are given if the wrong grammatical form of the target word is used in the correct context.
- A score of 5 reflects semantically and grammatically correct use of the

56

Helpful resources- VKS Scoring

Scoring:

Any incorrect response:

- In category 3 yields a <u>score of 2 points</u> for the total item even if the student
- attempted category 4 and category 5 unsuccessfully.

 If the sentence in category 5 demonstrates the correct meaning but the word is not used appropriately in the sentence context, a score of 3 is given.
- In category 5, a <u>score of 4 is given</u> if the wrong grammatical form of the target word is used in the correct context.
- A score of 5 reflects semantically and grammatically <u>correct use</u> of the *target* word.

Helpful resources- VRT Scoring

Scoring:

- A correction formula was applied to obtain a score that adjusts for possible guessing.
- A student scored a "hit" (H) when the word was circled correctly
- A student scored a "false alarm" (FA) if an unrelated word was incorrectly circled.
- The proportion of words truly known, P(K), was determined with the following formula: P(K) = P(H) - P(FA) / 1 - P(FA)

58

Further reading

- National Research Council. (2001). Adding It Up: Helping children learn mathematics. Washington, DC: The National Academies Press, doi: 10.17226/9822 (download FREE here:
- Evans, David. (2017). Examining the Literacy within Numeracy to Provide Access to the Curriculum for All. 10.1108/S1479-363620170000011003.
- Extensive collection of published writings on many aspects of mathematical language https://www.nctm.org/Publications/Publications-Main-Page/
- Mathematics Instruction for Students with Learning Disabilities or Difficulty Learning Mathematics https://files.eric.ed.gov/fulltext/ED521890.pdf

59

References

- 1. Council of Australian Governments. (2008). National Numeracy Review report. Canberra: Commonwealth of
- Council of Australian Governments, (2008). National Numeracy Review report. Camberra: Commonwealth of
 Australia. http://www.coag.gov.au/reports/docs/national_numeracy_review.pdf
 Kiuhara, Sharlene A, and Bradley S. Witzel. Math literacy strategies for students with learning difficulties." Childhood
 Education, vol. 90, no. 3, May-June 2014, pp. 234+. Gale Academic OneFile,
 link: gale. com/apps/doc/AS09128879/AONE?u=anon-d1fo8098&sid=googleScholar&xid=1dde06fe. Martiniello, M.
 (2008). Language and the performance of English-language learners in math word problems. Harvard Educational
 Review. 78(2):333-367: Little/hite. hepo.gorg/content/0783570111132/fulltex.pdf
 Meiers, M. (2010). Language in the mathematics classroom. The Digest, NSWIT, 2010 (2).
 http://www.nsvetachers.nsv.wed.au
- http://www.nswteachers.nsw.edu.au

 1. O'Halloran, K. L. (2000). Classroom discourse in mathematics: A multi-semiotic analysis. Linguistics and Education, O'Haloran, K. L. (2000). Classroom discourse in mathematics: A multi-semiotic analysis. Linguistics and Education, 10(3), 359-388.
 Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly, 23(2), 139-159.
 Shartene A. Kiuhara & Bradley S. Witzel (2014) Focus on Inclusive Education: Math Literacy Strategies for Students With Learning Difficulties, Childhood Education, 90:3, 234-238, DOI: 10.1080/00094056.2014.912067
 Spaepen, E., Coppola, M., Spelke, E.S., Carey, S.E., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1015975108
 Zambo, R. (2005). The power of two: Linking mathematics and literature. Mathematics Teaching in the Middle School, 10 (8), 394-399.

